Estimation of shale volume from well logging data using Artificial Neural Network

نویسندگان

چکیده

The existence of shale has a major effect on reservoir quality because it reduces the rock’s both porosity and permeability. There are several types shale, they can be distributed in sand four different ways: laminated, structural, dispersed, or any combination these. Each them various features physical properties. Therefore, volume estimation is one most important challengin tasks to solved information evaluation. many equations proposed calculate from Gamma - ray log; however, none could considered best method that applied all case studies. This study aims propose new approach estimate well logging data. other logs were used as input data for an artificial neural network (ANN) predict volume. We apply this technique 1143 set ocean drilling program (ODP) East Sea. authors compared result core recognized utilization ANN gives better than conventional methods (more accurate reflect trend actual volume).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of ultimate strength of shale using artificial neural network

A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimat...

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Estimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network

Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...

متن کامل

Daily Pan Evaporation Estimation Using Artificial Neural Network-based Models

Accurate estimation of evaporation is important for design, planning and operation of water systems. In arid zones where water resources are scarce, the estimation of this loss becomes more interesting in the planning and management of irrigation practices. This paper investigates the ability of artificial neural networks (ANNs) technique to improve the accuracy of daily evaporation estimation....

متن کامل

runoff estimation using artificial neural network method

runoff is one of the major components of calculating water resource processes and is the main issue in hydrology. many concept models are used to predict the amount of runoff, which in most cases depend on topographical and hydrological data. conventional models are not appropriate for areas in which there is little hydrological data. changes in runoff are nonlinear, meaning it is time & space ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: T?p chí Khoa h?c K? thu?t M?- ??a ch?t

سال: 2021

ISSN: ['1859-1469']

DOI: https://doi.org/10.46326/jmes.2021.62(3).06